TECHNIQUE AVANCÉE

Données complémentaires pour une meilleure approche du chapitre

5. CARACTÉRISTIQUES MÉCANIQUES

5.50 Synoptique des principaux essais mécaniques

6. PROFIL D'UN ÉLÉMENT FILETÉ

6.0 Symboles et normes de référence des filetages courants

BIBLIOTHÈQUE ET OUTILS

20 Tableau comparatif des rondelles selon normes NFE, DIN et ISO

24 Vocabulaire du métier de la fixation Choix d'un assemblage boulonné

4.0 Démarche de choix d'un élément d'assemblage

Un élément d'assemblage est choisi en fonction d'un certain nombre de critères successifs. Les différents choix combinés permettront de désigner le ou les éléments les mieux adaptés.

1 Pièces à assembler

- Caractéristiques mécaniques et dimensionnelles.
- Matière des constituants à assembler.
- Revêtements des constituants à assembler.
- Nombre de vis d'assemblage (ou boulons).
- Conditions de conservation/stockage avant mise en service.
- Conditions de fonctionnement (modifications de contraintes en fonctionnement, vitesse, accélération, à-coups...)
- Etc.

2 Sollicitations mécaniques que devront subir les vis d'assemblage

- La traction : c'est une contrainte principale qui peut entraîner la rupture.
- Le cisaillement : effort qui tend à couper la pièce par des efforts opposés et perpendiculaires à sa surface.
- Le flambage : déformation brusque d'une pièce longue soumise à un effort de compression axiale (sollicitation peu fréquente en visserie-boulonnerie)
- La compression : dans un assemblage les pièces assemblées sont soumises à la compression, mais également une partie de la tête de la vis et de la zone de l'écrou en appui.
- La flexion : existe rarement dans les éléments de fixation, sauf lorsque les surfaces d'appuis des pièces à assembler ne sont pas parallèles entre elles.
- La torsion due à la partie filetée de la vis : lors du serrage, une partie des forces nécessaires au vissage occasionne une torsion dans la vis du fait des frottements internes.
- La fatigue : les propriétés d'un matériau peuvent être modifiées consécutivement aux variations périodiques de contraintes entraînant la rupture brutale sans déformation préalable.

3 Contraintes législatives, réglementaires ou diverses

- Conditions de calcul. Exemple : EUROCODE 3 pour les structures de bâtiment.

- Conditions sectorielles. Exemple : règlements ROHS pour les revêtements dans les secteurs de l'automobile ou du matériel électrique.
- Conditions diverses. Exemple: exigence d'aspect pour un produit visible.
- Règlement REACH.

4 Mode d'entraînement de la vis et mode de montage (manuel ou automatique)

- Conditionne la forme de la tête de la vis et de l'empreinte.
- Conditionne éventuellement un niveau de PPM dimensionnel ou de présence d'intrus.

5 Nombre de montages et de démontages dans un cycle de vie

- Conditionne le mode de freinage de la vis ou de l'écrou.

6 Couple de serrage

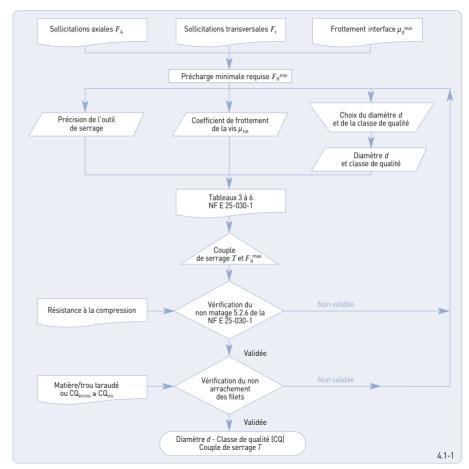
- Conditionne également la forme de la tête de la vis et de l'empreinte.
- Conditionne la classe de la vis et le mode de freinage, ou la classe de l'écrou.
- Conditionne l'outil de pose et sa précision.

7 Milieu ambiant

- Humidité, air salin, oxydant, température, pollution...
- Conditionne le revêtement de surface ou la nature des matériaux : laiton, inox, plastiques...

8 Conditions économiques (coût complet monté)

- Rationalisation de référence ou non.
- Taille de lot minimum par rapport au besoin.
- Coût de montage.

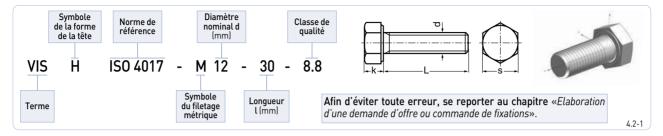

4.1 Démarche de dimensionnement d'un assemblage vissé

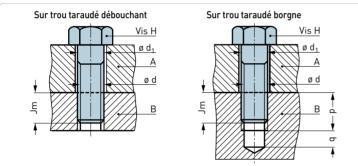
Un assemblage vissé se calcule, en considérant la fonction de l'assemblage, les sollicitations mécaniques qu'il va subir, les matériaux utilisés, la classe de qualité des éléments de l'assemblage, les frottements aux interfaces des pièces et les moyens et procédures de serrage. La norme NF E 25-030-1 propose une démarche permettant de traiter les cas courants. Pour les cas plus complexes, une démarche plus complète et sécuritaire est proposée par la norme NF E 25-030-2.

ASSEMBLAGE COURANT NF E 25-030-1 : DEMARCHE SIMPLIFIEE VALIDATION DES CONDITIONS DE SERRAGE

ASSEMBLAGE COMPLEXE NF E 25-030.2 : DEMARCHE COMPLETE VALIDATION DE L'ASSEMBLAGE (tenues statiques, dynamiques et thermiques et VALIDATION DES CONDITIONS DE SERRAGE

Les couples de serrage minimaux, selon classe de qualité de la vis et classe des moyens d'application du couple sont consultables dans la partie "BIBLIOTHEQUE et OUTILS".


Synoptique de démarche de la norme NF E 25-030-1


4

4.2 Règles d'implantation

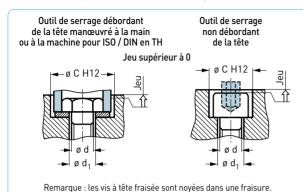
Désignation normalisée des vis

Assemblage par vis avec tête débordante

- **Trou lisse de passage de la vis dans la pièce A** : le diamètre d_1 est choisi en fonction du diamètre d de la vis (voir tableau 4.2-3) $d_1 > d$
- Implantation minimale J_m de la vis : longueur de filetage de la vis en prise avec le trou taraudé dans la pièce B.
- La longueur j définit la longueur de filetage en prise pour l'assemblage considéré :
- vis : métaux durs : $j \ge d$ / métaux tendres : $j \ge 1,5$ d
- goujons : métaux durs : j ≥ 1,5 d / métaux tendres: j ≥ 2 d

La longueur p définit la longueur de filetage intérieur : p = j + 3 à 4 pas

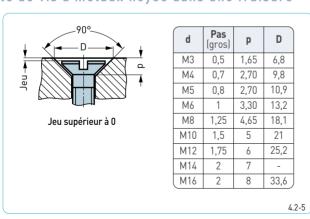
La longueur q définit la longueur du trou avant taraudage : q = j + 8 à 9 pas

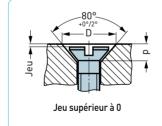

Pour des facilités d'usinage et dans la mesure du possible, il est conseillé de faire déboucher les taraudages.
4,2-2

4.2-3

Diamètre	Diamètre	d ₁ du trou d	e passage	Diamètre	Diamètre	d ₁ du trou d	e passage
nominal		Série		nominal		Série	
d	fine H12	moyenne H13	large H14	d	fine H12	moyenne H13	large H14
M 1	1,1	1,2	-	M 24	25	26	28
M 1,2	1,3	1,4	-	(M 27)	28	30	32
M 1,4	1,5	1,6	-	M 30	31	33	35
M 1,6	1,7	1,8	2,0	(M 33)	34	36	38
M 2	2,2	2,4	2,6	M 36	37	39	42
M 2,5	2,7	2,9	3,1	(M 39)	40	42	45
M 3	3,2	3,4	3,6	M 42	43	45	48
(M 3,5)	3,7	3,9	4,2	(M 45)	46	48	52
M 4	4,3	4,5	4,8	M 48	50	52	56
M 5	5,3	5,5	5,8	(M 52)	54	56	62
M 6	6,4	6,6	7,0	M 56	58	62	66
(M 7)	7,4	7,6	8,0	(M 60)	62	66	70
M 8	8,4	9,0	10,0	M 64	66	70	74
M 10	10,5	11,0	12,0	(M 68)	70	74	78
M 12	13	13,5	14,5	M 72	74	78	82
(M 14)	15	15,5	16,5	(M 76)	78	82	86
M 16	17	17,5	18,5	M 80	82	86	91
(M 18)	19	20	21,0	(M 85)	87	91	96
M 20	21	22	24,0	M 90	93	96	101
(M 22)	23	24	26,0	(M 95)	98	101	107
L'amplai da	c dimoncion	c ontro naron	thàcac act à	éviter autant	aug noccible		

L'emploi des dimensions entre parenthèses est à éviter autant que possible (dimensions peu courantes).

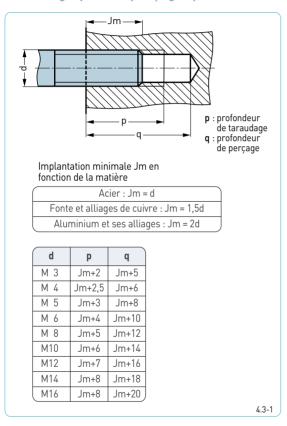

Tête de vis noyée dans un lamage pour ISO / DIN en TH


Diamètre		øCH12/Out	l de serrage		
nominal d	d ₁ H13	Non débordant	Débordant		
М3	3,4	8	12		
M4	4,5	10	16,5		
M5	5,5	11	19,5		
M6	6,6	13	22		
M8	9	18	28,5		
M10	11	20	37		
M12	13,5	22	42		
M14	15	26	47		
M16	17,5	30	52		

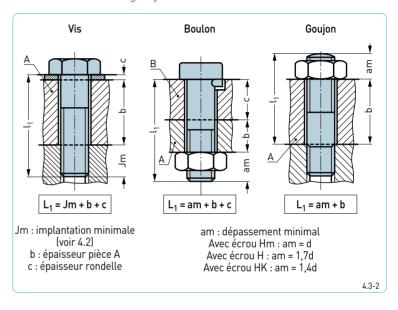
4.2-4

Tête de vis à métaux noyée dans une fraisure

Tête de vis à tôle (à la DIN) noyée dans une fraisure



d	Pas	р	D min	D max
2,2	0,80	1,30	4,00	4,30
2,9	1,10	1,70	5,20	5,50
3,5	1,30	2,10	6,44	6,80
3,9	1,30	2,30	7,14	7,50
4,2	1,40	2,50	7,14	8,10
4,8	1,60	3,00	9,14	9,50
5,5	1,80	3,40	10,37	10,80
6,3	1,80	3,80	11,97	12,40


4.2-6

4.3 Implantation d'une vis

Détermination de la profondeur de taraudage p et de perçage q

Détermination de la longueur d'une vis, d'un boulon et d'un goujon

4.4 Les boulons

Présentation

Un boulon est constitué :

- d'une vis portant le filetage,
- d'une ou deux rondelles assurant l'appui,
- d'un écrou permettant le serrage.

Un boulon assure une liaison fixe démontable entre les pièces A et B.

Les boulons sont définis à partir de la forme de la tête de vis

Boulon à tête hexagonale

C'est le boulon le plus utilisé en construction mécanique. L'arrêt en rotation (d'axe Z) de la tête H est facilement et économiquement réalisé :

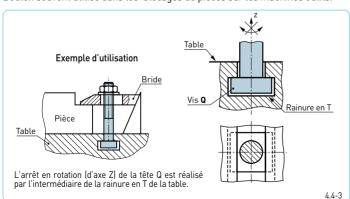
- par une clé si accessibilité.
- par un obstacle comme la face F (figure 4.4-2),
- par une plaquette arrêtoir.

Z Vis M

face F

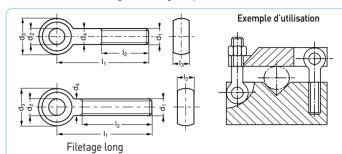
d₁: diamètre passage de vis

Écrou **H**


Rondelle M

44-1

Boulon à tête carré


Boulon souvent utilisé dans les blocages de pièces sur les machines outils.

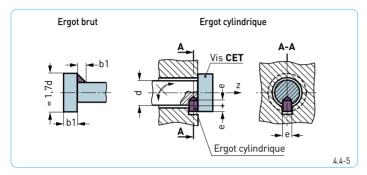
Vis H

Boulon à œil ou vis d'articulation

Très utilisé sur les montages d'usinage disposant de bride articulée.

- (d ₁	d ₂ H7	d ₃ -0,3	d ₄		l ₁		l ₂	l ₃ -0,15
	M 5	5	12	5	50	75		22	6
	M 6	6	14	6	50	75		32	7
	M 8	8	18	8	50	75	100	32	9
	M 10	10	20	10	50	75	130	40	12
	M 12	12	25	12	75	100	130	40	14
	M 16	16	32	16	75	100	160	50	17
-	M 20	18	40	20	100	130		63	22)

Filetage long

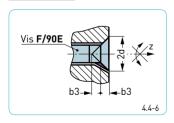

	1	1 -0/		1	-				1 02
d_1	d ₂ E8	d ₃ -0,4	d4		l ₁			l ₂	l3 ^{-0,2}
M 6	6	12	6	50	60	70	80	40	8
M 8	8	16	8	50				40	10
M 8	8	16	8	60	70	80	100	45	10
M 10	10	20	10	50				38	12
M 10	10	20	10	60				46	12
M 10	10	20	10	70	80	100	120	50	12
M 12	12	25	12	50				35	14
M 12	12	25	12	60				42	14
M 12	12	25	12	70				52	14
M 12	12	25	12	80	100	120	130	60	14
M 16	16	32	16	70				49	18
M 16	16	32	16	80				59	18
M 16	16	32	16	100				77	18
M 16	16	32	16	120	140	160		80	18
M 20	20	40	20	100				75	22
M 20	20	40	20	125				95	22
M 20	20	40	20	140	160			100	22
M 24	25	50	24	160	240			120	28

4.4-4

Boulon à tête cylindrique

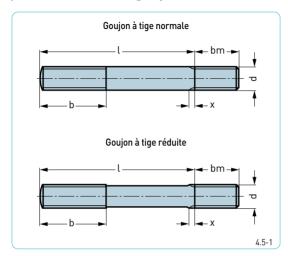
L'arrêt en rotation (d'axe Z) est obtenu soit :

- par un ergot cylindrique rapporté avec e = 2 pas
- par un ergot brut symbole CE avec $b_1 = \frac{d}{2}$



Boulon à tête fraisée

L'arrêt en rotation (Rz) est également obtenu :

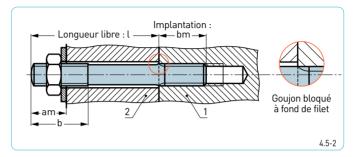

- par un ergot cylindrique rapporté F90/ET
- par un ergot brut $\boxed{F90/E}$ avec $\boxed{b_3 = \frac{d}{2}}$

Remarque : ceci s'applique également aux boulons à tête fraisée bombée FB90/E ou ET

4.5 Les goujons NFE 25-135

Représentation d'un goujon

Implantation bm en fonction de la matière

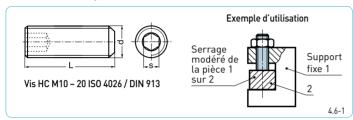

Acier: bm = 1,5 d

Fonte, cuivre et alliages: bm = 2 d

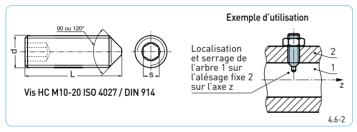
Aluminium et alliages: bm = 2,5 d

Remarque : selon que les parties filetées soient réalisées par roulage ou par taillage, la zone de raccordement entre partie lisse et partie filetée, ainsi que les zones terminales peuvent avoir une géométrie différente. Il est conseillé de se reporter à la norme de référence.

Implantation d'un goujon

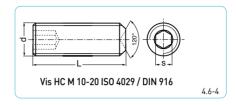


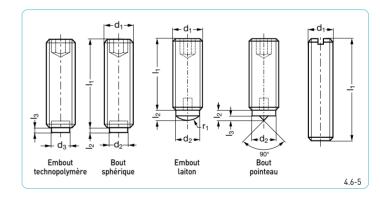
4


4.6 Les vis de pression

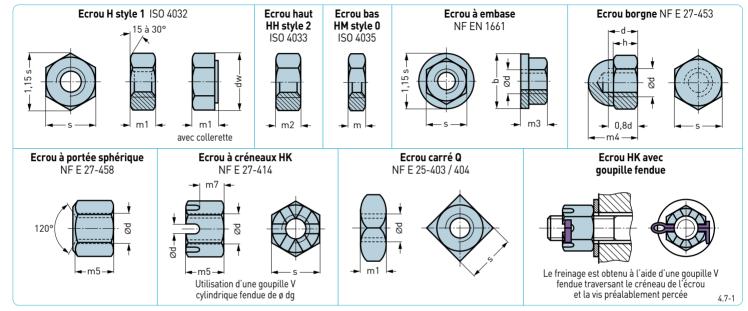
Vis sans tête à empreinte 6 pans creux HC

Vis sans tête à bout plat

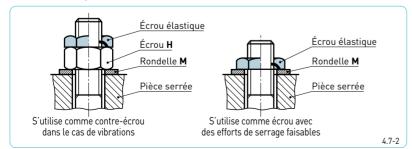

Vis sans tête à bout conique

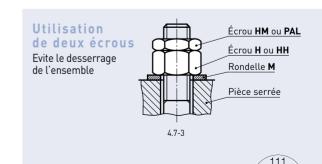

Vis sans tête à bout téton

Vis sans tête à bout cuvette

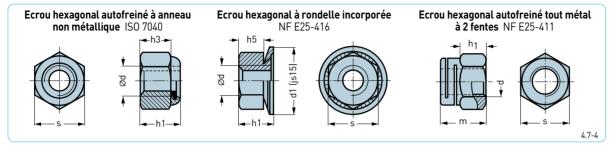


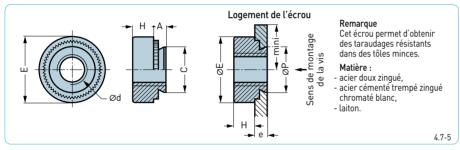
Vis de pression à tête réduite




4.7 Les écrous

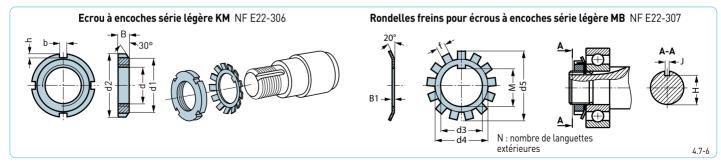
Ecrous hexagonaux


Ecrous élastiques en tôle NFE 27-460 (dit écrou PAL)



MAURIN FIXATION TEL: 33(0)4 72 85 85 85

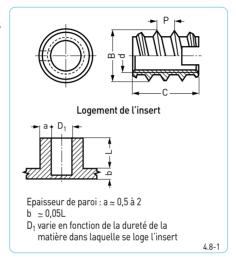
Ecrous autofreinés



Ecrous à sertir pour tôle

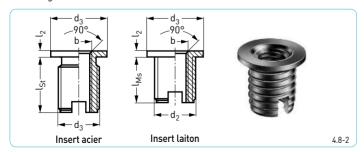
Ecrous et rondelles à encoches

4.8 Les inserts et filets rapportés


Les inserts

Autotaraudeurs

- Inserts pour les moulages en alliages légers.
- Inserts pour matières plastique.


Matière :

- acier cémenté trempé zingué chromaté blanc,
- inox.
- laiton.

Insert à collerette

- Pose par vissage (autotaraudeur).
- Acier zingué ou laiton.

Les filets rapportés

Techniques de renforcement des taraudages

Le filet rapporté se présente sous la forme d'un ressort réalisé à partir d'un fil laminé de section en losange qui lui confère un double filetage : intérieur et extérieur.

Propriétés

- Renforcement mécanique du taraudage.
- Interface à la corrosion électrolytique entre la fixation et son support.
- Tenue en température pour un filet rapporté en acier réfractaire.

Entaille Bout d'entraînement Coupe transversale du fil 4.8-3

Domaines d'application

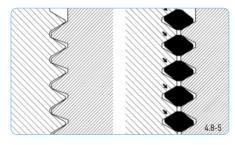
- Pose dans l'alliage léger, réparation de taraudage.
- Aéronautique, spatial.
- Nucléaire, automobile.
- Diminution de la contrainte de torsion To dans la vis.


Le filet rapporté est réalisé en acier inoxydable :

- résistance à la traction R_m : 1400 N/mm² ;
- dureté Vickers HV: 425 HV 0.2;
- profondeur de rugosité R₂ : 2,5 μm ;
- coefficient de frottement réduit μ : \leq 0,14 avec vis en acier, huilée ;

Répartition régulière des contraintes

La grande élasticité du filet favorise une répartition régulière des charges et de la contrainte. Celle-ci forme un joint entre la vis et le filet.


Les erreurs de pas ou d'angle s'équilibrent sur l'ensemble des flancs du filet.

MAURIN FIXATION TEL: 33(0)4 72 85 85 85

On obtient ainsi une meilleure répartition des charges.

La qualité du rendement de la vis se trouve fondamentalement accrue qu'il s'agisse d'une charge statique ou dynamique.

4.8-6 Couples de freinage selon ISO 2320 (Nm). Pas fin ou normal pour une vis de classe 8.8 pour les versions autofreinées

Filetage	М3	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20
Couple de serrage	1,0	2,5	5,0	8,6	21,0	42,0	76,0	121,0	189,0	261,0	370,0
1 ^{er} vissage maxi	0,43	0,90	1,60	3,00	6,00	10,5	15,5	24,0	32,0	42,0	54,0
1er dévissage mini	0,12	0,18	0,29	0,45	0,85	1,5	2,3	3,3	4,5	6,0	7,5
5 ^{ème} dévissage mini	0,08	1,12	0,20	0,30	0,60	1,0	1,6	2,3	3,0	4,2	5,3

La technique de la spire déformée assure un freinage important qui s'oppose à tout risque de dévissage intempestif de la vis (chocs thermiques ou vibratoires). Un ajout supplémentaire pour assurer l'anti-dévissage comme les rondelles, les goupilles, les fils-freins n'est plus nécessaire. Ainsi, cela réduit les coûts et facilite le montage. Pour une distinction simple et rapide : les filets rapportés peuvent être teintés pour différencier les versions standard et autofreinée

Aide au choix

4 8-7

4.8-7					
Matière du filet ⁽¹⁾	Tenue en température	Résistance à la traction en ambiance tempérée	Traitements de surface livrables (1)	Exem	ples
Acier inoxydable X5 CrNi 18 10	425°C en pointe 315°C en continu	1400 N/mm²	- Sans revêtement - Lubrifiant sec - Argentage	- Applications classiques pour toutes matières de support et classes de vis [3]	- Tous produits en aluminium, alliages d'aluminium ou magnésium ⁽²⁾
Acier inoxydable X6 CrNiMoTi 17 12 2 ^[4]	425°C en pointe 315°C en continu	1400 N/mm²	- Sans revêtement - Cadmiage	- Amélioration de la tenue en corrosion - Vis inox à forte teneur en CrNi ⁽³⁾ - Vissage avec frottement réduit	- Tous produits en eau de mer et chlorée
Bronze CuSN 6	300°C en pointe 250°C en continu	1000 N/mm²		- Supports en Cu - Vis inox au CrNi - Vissage de réglage	
Superalliage NiCr 15 Fe 7 TiAl [4]	750°C en pointe 550°C en continu	1150 N/mm²	- Sans revêtement - Argentage	- Contraintes thermiques et tenue en corrosion	
Superalliage NiCr 20 Co 18 Ti Nimonic 90	900°C en pointe 600°C en continu				- Aéronautique - Propulseurs d'avion - Turbocompresseurs
Aluminium spécial (série 7000) AIZnMgCu 1.5 ⁽⁴⁾	170°C en pointe 150°C en continu	500 N/mm²	- Anodisé dur - Lubrifiant sec	- Pièces en magnésium ^[2]	- Automobile - Produits en matériaux légers

- 1. Autres matières ou traitements de surface sur demande.
- 2. Pour les applications en alliages de magnésium en milieu extérieur, des précautions supplémentaires seront prises.
- 3. Avec des vis inox au CrNi, un revêtement ou un lubrifiant approprié est conseillé.
- 4 Sur demande

Détermination de la longueur nominale du filet rapporté

Le tableau ci-dessous permet de définir la longueur minimale du filet rapporté en fonction du matériau récepteur et de la classe de la vis. Il est établi pour une température de 20°C.

4.8-8

		Qualité de la vis								
Résistance du matériau support Rm (N/mm²)*	3.6	4.8 5.6	5.8 6.6	6.8	8.8	9.8	10.9	12.9	14.9	
jusqu'à 100	1,5 d	1,5 d	2 d	2,5 d	3 d	3 d	-	-	-	
> 100 - 150	1,5 d	1,5 d	2 d	2 d	2,5 d	2,5 d	2,5 d	2,5 d	3 d	
> 150 - 200	1 d	1,5 d	1,5 d	1,5 d	2 d	2 d	2 d	2,5 d	2,5 d	
> 200 - 250	1 d	1 d	1,5 d	1,5 d	1,5 d	1,5 d	2 d	2,5 d	2,5 d	
> 250 - 300	1 d	1 d	1 d	1 d	1,5 d	1,5 d	1,5 d	2 d	2 d	
> 300 - 350	1 d	1 d	1 d	1 d	1 d	1,5 d	1,5 d	1,5 d	2 d	
> 350 - 400	1 d	1 d	1 d	1 d	1 d	1 d	1,5 d	1,5 d	1,5 d	
> 400	1 d	1 d	1 d	1 d	1 d	1 d	1,5 d	1,5 d	1,5 d	

 $*1 \text{ N/mm}^2 = 1 \text{ Mpa}$

Les valeurs du tableau pour déterminer la longueur nominale du filet rapporté sont valables pour l'aluminium ainsi que pour les matières avec un ratio :

résistance au cisaillement résistance à la traction = 0,6 à 0,7.

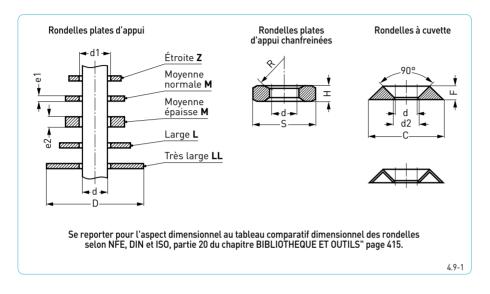
Certains alliages de fonderie ont un ratio compris entre :

résistance au cisaillement
résistance à la traction

= 0,8 à 1,4.

Les longueurs de filet sont calculées pour que la vis soit l'élément le plus faible de l'assemblage.

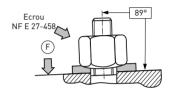
Ces valeurs sont indicatives et assurent une sécurité totale d'utilisation.


Ces longueurs ainsi définies peuvent parfois être réduites moyennant une confirmation par des essais.

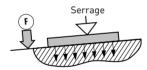
Des longueurs intermédiaires sont réalisables.

Pour des assemblages soumis à température, il faudra tenir compte de l'évolution de résistance du matériau récepteur.

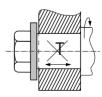
Compte tenu des précisions de fabrication, il faut utiliser les tarauds, tampons de contrôle des taraudages (avant montage des filets rapportés), outils de montage et filets rapportés spécifiques au fabricant.


4.9 Les rondelles d'appui et rondelles-frein

Exemples d'utilisation

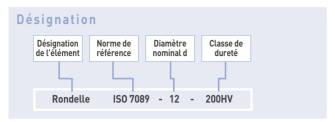

Rondelles à portée sphérique

Elles permettent de rattraper un défaut de perpendicularité de la surface d'appui F par rapport à l'axe de serrage.



Rondelles plates

Elles permettent une répartition uniforme des pressions de serrage, évitent le marquage de la surface d'appui F (matage) et permettent une meilleure maitrise du serrage au couple.



Elles peuvent constituer un arrêt en translation peu coûteux (matérialisé par une liaison pivot).

4.9-2

Rondelles plates

Il existe désormais une norme de référence pour les caractéristiques mécaniques pour les rondelles plates : NF EN ISO 898-3.

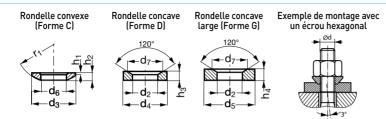
Il existe 4 classes de qualité: 100, 200, 300 et 380 HV.

4.9-3

Classe de qualité		100 HV	200 HV	300 HV	380 HVa
Dureté Vickers, HV	min.	100	200	300	380
Durete vickers, nv	max.	200 ^b	300	370	450
Dureté Rockwell C, HRC	min.	-	-	30	39
Durete Nockwett 6, 1110	max.	-	-	39	45
Décarburation partielle, HV 0,3	max.	-	-	С	30 q
Profondeur de décarburation totale <i>G</i> , mm	max.	-	-	С	2 % de t _{eff} ou 0,02 mm ^e
Carburation, HV 0,3	max.	-	-	С	30f
Réduction de dureté après le deuxième revenu, HV 10	max.	-	-	20	20

- a La classe de qualité 380 HV n'est pas incluse actuellement dans les normes de produit ISO existantes. Si demandé, l'utilisation de cette classe de qualité doit faire l'objet d'un accord entre le client et le fournisseur.
- b Le dépassement de la dureté maximale jusqu'à 250 HV ne doit pas être une cause de rejet.
- Pour les rondelles striées ou crantées, les limites spécifiées pour la classe de qualité 380 HV doivent s'appliquer.
- d La dureté à 0,1 mm de la surface d'appui ne doit pas être inférieure de plus de 30 unités Vickers à la dureté mesurée sur une coupe radiale transversale de la rondelle.
- e La valeur la plus faible s'applique.
- f La dureté à 0,1 mm de la surface d'appui ne doit pas être supérieure de plus de 30 unités Vickers à la dureté mesurée sur une coupe radiale transversale de la rondelle.

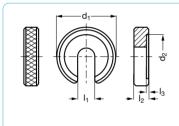
Les classes de qualité des rondelles nécessaires pour les classes de qualité des vis et écrous sont indiquées dans le tableau ci-dessous : par exemple pour une vis 8.8, une rondelle 200 HV est préconisée.


4.9-4

	nformes à l'ISO 898-1 O 898-2	Classes de qualité correspondantes pour les rondelles de forme plane					
Classes	le qualité						
Vis, goujons et tiges filetées	Ecrous normaux et hauts	100 HV	200 HV ^a	300 HVa	380 HV ^{b,c}		
4.6, 4.8, 5.6, 5.8	5	RCe	е	е	е		
6.8	6	d,e	RCe	е	е		
8.8	8	f	RCe	е	е		
9.8, 10.9	10	f	d,e	RCe	е		
12.9, <u>12.9</u>	12	f	f	d,e	RCe		

RC Combinaison recommandée (Recommended Combination).

- ^a Seules les classes de qualité 200 HV et 300 HV sont normalisées pour les rondelles des vis à rondelles imperdables; elles doivent être conformes à l'ISO 10644 ou à l'ISO 10673.
- b La classe de qualité 380 HV n'est pas incluse actuellement dans les normes de produit ISO existantes. Si demandé, l'utilisation de cette classe de qualité doit faire l'objet d'un accord entre le client et le fournisseur.
- c La conception d'assemblages vissés avec une rondelle de classe de qualité 380 HV doit éviter les effets de flexion et les contraintes de traction dans la rondelle, en particulier en présence de trous oblongs ou élargis.
- d RC représente la combinaison optimale; cependant, d'autres combinaisons correspondant à la note ^d peuvent également être utilisées à condition que la conception de l'assemblage et/ou les conditions de montage soient vérifiées.
- e Les combinaisons au-dessus de la ligne en gras en escalier peuvent être utilisées pour les assemblages vissés.
- f Les combinaisons en-dessous de la ligne en gras en escalier (zone grisée) ne doivent pas être utilisées.


Rondelles à portée sphérique DIN 6319

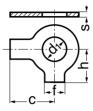
	_										
- (d	d_2	d₃ et d₄	d ₅	d ₆	d_7	h ₁	h ₂	h ₃	h ₄	r ₁
	6	7,1	12	17	6,4	11	0,7	2,3	2,8	4	9
	8	9,6	17	24	8,4	14,5	0,6	3,2	3,5	5	12
	10	12	21	30	10,5	18,5	0,8	4	4,2	5	15
	12	14,2	24	36	13	20	1,1	4,6	5	6	17
	16	19	30	44	17	26	1,3	5,3	6,2	7	22
	20	23,2	36	50	21	31	2	6,3	7,5	8	27

La rondelle concave peut être utilisée seule avec un écrou à portée sphérique ou avec une rondelle convexe. Cette technique est souvent utilisée sur les systèmes de blocage de pièces comportant des défauts angulaires (maximum de 3°).

Rondelles fendues amovibles NF E 27-617

d	d ₁	l_2	l ₁	d_2	l ₃ `
4	16	6	4,25	12	0,75
6	22	8	6,25	16	1
8	28	9	8,25	20	1,25
10	34	10	10,25	25	1,50
12	40	11	12,50	30	1,75
14	48	12	14,50	33	2
16	56	13	16,50	37	2
20	64	14	21	45	2,5 3
24	74	16	25	55	3
30	86	18	31	65	3
36	100	20	37	75	3

4.9-6


4.9-5

Plaquettes arrêtoir NF E 27-614

Rectangulaire

A ailerons

Rectangulaire

d	d ₁	b	С	g	S
5	5,5 7	10	14	8	0,5
6		16	16	10	0,5
7	8	20	18	12	0,5
8	9	20	20	13	1
10	11	25	22	18	1
12	14	28	24 28	21	1
14	16	30	28	23	1
16	18	34	32	27	1
18	20	36	36	29	1
20	22	40	40	32	1
22	24	42	44	34	1
24	27	45	48	37	1,5
27	30	48	55	42	1,5
30	33	55	60	46	1,5
33	36	60	66	49	1,5
36	39	65	72	53	1,5
39	42	68	78	56	1,5
42	49	73	84	61	1,5

A ailerons

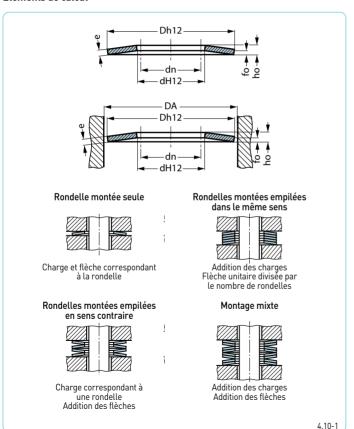
d	d ₁	С	h	f	5
5	5,5	13	8	5	0,5
6	7	16	10	6	0,5
7	8	16	12	7	0,5
8	9	18	13	8	1
10	11	23	18	9	1
12	14	25	21	12	1
14	16	28	23	13	1
16	18	32	27	15	1
18	20	36	29	16	1
20	22	40	32	18	1
22	24	45	34	20	1,5
24	27	48	37	22	1,5
27	30	55	42	24	1,5
30	33	60	46	26	1,5
33	36	66	49	29	1,5
36	39	72	53	31	1,5
39	42	78	56	32	1,5
42	45	84	61	35	1,5

4.9-7

Choix d'une rondelle d'appui et d'une rondelle-frein

Le choix et le domaine d'application concernent essentiellement les rondelles normalisées destinées aux assemblages comportant des vis sous tension.

4.9-8 Tableau synoptique des fonctions des rondelles pour assemblages précontraints


Moyenne Passable Nulle

		Classes de				Fonctions			
Types de rondelles	Norme de référence	qualité de la vis pour un assemblage rationnel	Protection contre les meurtrissures	Diminution de la pression moyenne	Répartition de la force de serrage	Trous de passage élargis Opposition au dévissage Fonction essentielle de protection contre les meurtrissures Souvent utilisées, par habitude, dans les assemblages non optimisés Exclusivement utilisées avec des vis tête fraisée Fixation de petites pièces : accessoires automobiles, cycles, électroménager Serrage de matériaux tendres Fixation des tôles minces en carrosserie automobile et électroménager Utilisées sur les glissières des moteurs électriques, alternateur Permettent de maintenir la tension dans les assemblages optimisés Recommandées pour les assemblage des pièces de très bonne géométrie Assurent dans de bonnes conditions la laision électrique des masses Utiliser en sécurité anti-desserrage dans			
Plates	ISO 7092	8.8 00 HV 00 HV 10.9							
Grower sans bec	DIN 7980 NFE 25-515 NFE 25-516 NFE 25-517 DIN 127B	≤ 10.9							Souvent utilisées, par habitude, dans les assemblages non optimisés
Grower avec bec	NFE 25-515 DIN 127A DIN 7980	≤ 10.9					Opposition au dévissage desserrage de masse Fonction essentielle de protection contre les meurtrissures Souvent utilisées, par habitude, dans les assemblages non optimisés Exclusivement utilisées avec des vis tête fraisée Fixation de petites pièces : accessoires automobiles, cycles, électroménager Serrage de matériaux tendres Fixation des tôles minces en carrosserie automobile et électroménager Utilisées sur les glissières des moteurs électriques, alternateur Permettent de maintenir la tension dans les assemblages optimisés Recommandées pour les assemblages des vis très courtes (risque de tassement) Assurent dans de bonnes conditions la liaison électrique des masses Assemblage des pièces de très bonne géométrie		
A dents chevauchantes extérieures forme concave	NFE 27-624 NFE 27-625 DIN 6798A	≤ 8.8							
A dents chevauchantes planes	NFE 27-626	≤ 8.8							accessoires automobiles, cycles,
Ondulées à deux ondes	NFE 27-620 DIN 137B	≤ 8.8							Serrage de matériaux tendres
Coniques à dents intérieures	NFE 27-512	8.8							en carrosserie automobile
A double denture	NFE 27-626	≤8.8							Utilisées sur les glissières des moteurs électriques, alternateur
Coniques striées	NFE 25-511	6.8 8.8							
Coniques lisses	NFE 25-510	8.0 12.9							assemblages des vis très courtes
Coniques striées à picots	non normalisée	≤ 8.8							
Plates trempées épaisses	non normalisée	10.9 12.9							
à rampes	non normalisée	≤ 10.9							

4.10 Les rondelles ressorts

Rondelles ressorts coniques statiques (dites Belleville)

Eléments de calcul

Guidage des rondelles

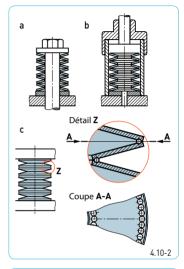
Guidage de l'empilage alterné

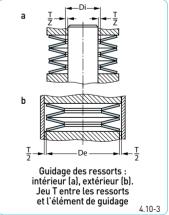
Paquets et empilages de rondelles ressorts sont guidés par des éléments tels que, par exemple :

- une broche de guidage (guidage intérieur, voir figure 4.10-2a);
- un manchon de guidage (guidage extérieur, voir fig 4.10-2b) ;
- ou par des mesures autocentreuses : guidage par billes (voir fig 4.10-2c) ou par des segments en fil métallique écroui.

Guidage et jeu conseillé

Quand les rondelles ressorts sont empilées en colonnes, il faut alors qu'elles soient guidées sur le bord intérieur ou extérieur.


Dans le cas d'un guidage intérieur, l'axe de guidage devrait avoir une surface lisse avec dureté de 52 HRC.


Pour le jeu entre l'élément de guidage et le ressort, on conseille les valeurs indiquées dans le tableau 4.10-4.

Les ressorts devraient travailler dans la mesure du possible entre $s = 0,1.h_0$ et $s = 0,75.h_0$.

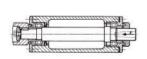
4.10-4

Diamètre interne (mm)	Jeu T min.
4,2 à 14,2	0,2
16,3 à 18,3	0,3
20,4 à 25,4	0,4
28,5	0,5
31 à 64	1,0
72 à 127	2.0

MAURIN FIXATION TEL: 33(0)4 72 85 85 85

Dimensions et valeurs des charges

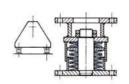
4.10-5 Caractéristiques dimensionnelles


			CHSIOTHICKES				
Diamètre de désignation	d ₁ H14	(mm)	d₂ Js15 (mm)	s (mm)	H avant serrag	b 2H12 ⁽¹⁾ (mm)	
de d (mm)	min.	max.	nom.	nom.	min.	max.	(111111)
5	5,30	5,60	11 15 ± 0,35	1,2 ± 0,04 1,4 ± 0,04	1,5 1,8	1,8 2,1	0,36
6	6,40	6,76	12 ± 0,35 14 ± 0,35 18 ± 0,35	1,4 ± 0,04 1,5 1,7 ± 0,05	1,7 1,9 2,1	2,0 2,2 2,4	0,36 0,36 0,36
8	8,40	8,76	16 ± 0,35 18 ± 0,35 22 ± 0,42	1,9 ± 0,05 2,0 ± 0,05 2,2 ± 0,05	2,3 2,4 2,6	2,6 2,7 3,0	0,36
10	10,50	10,93	20 ± 0,42 22 ± 0,42 27 ± 0,42	2,2 ± 0,05 2,4 ± 0,05 2,8 ± 0,06	2,7 2,9 3,3	3,1 3,3 3,7	0,42
12	13,00	13,43	24 ± 0,42 30 ± 0,42	2,8 ± 0,06 3,2 ± 0,06	3,2 3,8	3,6 4,2	0,42
[14][2]	15,00	15,43	28 ± 0,42	3,0 ± 0,06	3,5	3,9	0,42
16	17,00	17,43	32 ± 0,50 39 ± 0,50	3,4 ± 0,06 3,6 ± 0,06	3,9 4,3	4,3 4,7	0,50
20	21,00	21,52	38 ± 0,50 45 ± 0,50	4,0 ± 0,07 4,4 ± 0,07	4,7 5,9	5,1 6,4	0,50

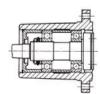
4.10-6 Caractéristiques d'épreuves

Diamètre de désignation d (mm)	D2 nom. (mm)	S nom. (mm)	Charge d'épreuve F ⁽¹⁾ [N]	Flèche après essai ⁽²⁾ min (mm)	Couple de serrage (essai de fragilité) (N.m)
5	11	1,2	8 200	0,15	7,1
	15	1,4	8 200	0,25	7,1
6	12	1,4	11 600	0,15	12
	14	1,5	11 600	0,20	12
	18	1,7	11 600	0,25	12
8	16	1,9	21 200	0,20	29
	18	2,0	21 200	0,22	29
	22	2,2	21 200	0,30	29
10	20	2,2	33 700	0,25	58
	22	2,4	33 700	0,30	58
	27	2,8	33 700	0,35	58
12	24	2,8	48 900	0,25	100
	30	3,2	48 900	0,40	100
[14][2]	28	3,0	66 700	0,30	160
16	32	3,4	91 000	0,35	245
	39	3,6	91 000	0,50	245
20	38	4,0	147 000	0,50	460
	45	4,4	147 000	0,60	460

^{1.} La charge d'épreuve de la rondelle équivaut à celle de la vis de même diamètre nominal en classe 8.8. 2. La flèche est égale, conventionnellement, à la différence entre la hauteur h et l'épaisseur réelles de la rondelle.


Exemples de montages

Montage de roulements à billes sur broche de fraisage


Suspension de véhicule Rondelles ressorts montées en sens contraire

Amortisseurs de vibrations Rondelles ressorts coniques en montage mixte

Maintien en compression des joints Rondelles ressorts montées en sens contraire

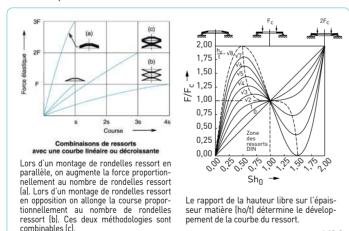
Montage de roulements à billes de corps de pompe Rondelles ressorts montées en sens contraire

4.10-7

La tolérance b se rapporte à la dimension d₂.
 L'emploi du diamètre d = 14 doit être évité si possible.

Rondelles ressorts dynamiques DIN 2093

Norme ISO en cours d'écriture


Les rondelles ressorts sont des anneaux de forme conique aplatis sur lesquels la charge s'exerce axialement. Selon leur application, les rondelles ressorts sont soit statiques, soit dynamiques et sont dénommées par, dans l'ordre :

- le diamètre extérieur D_e,
- le diamètre intérieur Di,
- l'épaisseur matière t,
- la hauteur libre L

Les rondelles ressorts se caractérisent par les propriétés suivantes :

- une force importante pour une faible course,
- un encombrement plus faible que tout autre type de ressort,
- des éléments empilables différemment perméttent des courbes caractéristiques variées.

Les rondelles ressorts sont souvent utilisées dans les secteurs de la construction de machines et appareils pour l'industrie pétrolière, automobile, aéronautique ou domestique.

Vue d'ensemble des produits

Les rondelles ressorts conventionnelles

- rondelles ressort selon DIN 2093 : groupe 1, groupe 2, groupe 3 ;
- dimensions : diamètre extérieur de 8 à 800 mm
- matière selon DIN 2093 (DIN 17 221, DIN 17 222) et matières spéciales

Empilage de rondelles ressorts

Les rondelles ressorts sont généralement montées sous la forme d'un empilage.

Avantages:

- simplification du montage par le pré-assemblage,
- courbe «force-course» spécifique à l'empilage (machine moderne de contrôle d'effort allant jusqu'à 1000 kN),
- possibilité de diminuer les tolérances d'effort.
- exclusion des erreurs d'empilage par le contrôle à 100% de l'effort.

Exemples d'applications

Empilage de rondelles ressorts

Installations techniques, centrales électriques, constructions mécaniques.

Les empilages de rondelles ressorts s'utilisent comme ressort de suspension de chaudières ou de réservoirs. Ces rondelles ressorts compensent l'inflexion locale du plafond-porteur et garantissent ainsi un abaissement uniforme de la chaudière en cas de variations de charge et de dilatation thermique.

Compensation de jeu

Installations techniques, constructions mécaniques.

Les rondelles ressorts servent à compenser les jeux des tolérances de l'ensemble des composants.

Freins à compression

Installations techniques, constructions mécaniques et automobiles.

Par baisse de la pression de service, les rondelles ressorts développent l'effort de freinage nécessaire.

Rondelles ressorts

Classification selon DIN 2093 (tableau 4.10-10)

Les rondelles ressorts sont normalisées selon la DIN 2092 (rondelles ressorts : calcul) et la DIN 2093 (rondelles ressorts ; dimensions, exigences de qualité). La DIN 2093 les divise en 3 groupes :

- groupe 1 : épaisseur t inférieure à 1,25 mm,
- groupe 2 : épaisseur t entre 1,25 et 6 mm,
- groupe 3 : épaisseur t entre 6 et 14 mm.

Les rondelles ressorts des groupes 1 et 2 sont fabriquées sans surfaces d'appui, celles du groupe 3 avec surface d'appui.

Matière de rondelles ressort

Pour les applications courantes l'acier ressort 51 CrV4 (n° 1.8159) est utilisé pour la fabrication des rondelles ressorts. L'utilisation des rondelles ressorts en basse ou haute, voire très haute température, ou bien en atmosphère corrosive peut également être envisagé sous réserve de spécification de matière selon le tableau 4.10-9.

4.10-8

Protection anticorrosive des rondelles ressorts

La protection standard des rondelles ressorts est la phosphatation zinc et huilage. Dans le cas où l'utilisation des rondelles ressorts demande une protection contre la corrosion supérieure ; nous sommes à même de vous proposer les alternatives suivantes :

- phosphatation zinc + cire,
- zingage galvanique + passivation,
- zingage mécanique + passivation 196 HBS, revêtement Delta-Tone / Delta-Seal,
- revêtement Geomet 500 A/B 600/1000 HBS,
- nickelage chimique.

4.10-9

Désimention	Numéro			Mod	ule d'élasti	cité (kN/m	m³) à		
Désignation	de matière	20°C	100°C	200°C	300°C	400°C	500°C	600°C	700°C
Ck 67	1,1231	206	202	-	-	-	-	-	-
50 CrV 4	1,8159	206	202	196	-	-	-	-	-
51 CrMo4	1,7701	206	202	196	-	-	-	-	-
X12 CrNi17 7	1,4310	190	185	178	-	-	-	-	-
X7 CrNiAl 17 7	1,4568	200	195	190	-	-	-	-	-
X5 CrNiMo 18 10	1,4401	190	185	178	-	-	-	-	-
X35 CrMo 17	1,4122	209	205	199	192	-	-	-	-
X30 WCrV 5 3	1,2567	206	202	196	189	178	-	-	-
X 22 CrMoV 12 1	1,4923	209	205	200	193	-	-	-	-
Cu Be 2	2,1247	135	131	126	-	-	-	-	-
Ni Bc 2	2,4132	200	195	189	182	176	-	-	-
Inconel 718 (Ni Cr 19 Nb Mo)	2,4568	200	196	190	186	179	172	-	-
Inconel X 750 (Ni Cr 15Fe 7 li Al)	2,4669	214	203	198	190	179	170	-	-
Nimonic go (Ni Cr 20 Co 18 Ti)	2,4969	206	701	195	189	181	175	167	160

Choix des rondelles ressort selon DIN 2093

4.10-10

Dime	nsions	mm)	Dime	ensions (mm)	Dim	ensions	(mm)	Dim	ensions	(mm)	Dime	ensions	(mm)	Dime	ensions	(mm)	Dime	ensions	(mm)	Dime	nsions	(mm)	Dime	nsions	(mm)
De	Di	t	De	Di	t	De	Di	t	De	Di	t	De	Di	t	De	Di	t	De	Di	t	De	Di	t	De	Di	t
8	3,2	0,30	18	9,2	1,00	34	16,3	1,50	63	31	3,00	112	57	4,00	160	82	11,00	125,00	64,00	5,00	280	152	18,5	360	182	21,
8	3,2	0,40	20	8,2	0,50	34	16,3	2,00	63	31	3,50	112	57	6,00	160	82	4,80	125,00	64,00	6,00	300	127	12	360	182	23
8	3,2	0,50	20	8,2	0,60	35,5	18,3	1,25	70	24,5	3,00	112	57	6,00	180	92	10,00	125,00	71,00	6,00	300	127	13	370	202	25
8	4,2	0,20	20	8,2	0,70	35,5	18,3	2,00	70	24,5	3,50	125	51	4,00	180	92	13,00	140,00	72,00	5,00	300	127	14	370	202	26
8	4,2	0,30	20	8,2	0,80	40	14,3	1,25	70	25,5	2,00	125	51	4,00	200	82	8,00	150,00		5,00	300	127	15,3	380	152	19
8	4,2	0,40	20	8,2	0,90	40	14,3	1,50	70	30,5	2,50	125	51	5,00	200	82	10,00	150,00		6,00	300	127	16	380	192	13
10	3,2	0,30	20	8,2	1,00	40	14,3	1,75	70	30,5	3,00	125	51	5,00	200	82	12,00	150,00		6,00	300	127	17	380	192	2
10	3,2	0,40	20	10,2	0,40	40	14,3	2,00	70	35,5	3,00	125	51	6,00	200	92	10,00	160,00		4,30	300	127	17,4	380	202	1:
10	3,2	0,50	20	10,2	0,50	40	16,3	1,50	70	35,5	3,50	125	51	6,00	200	92	12,00	160,00		6,00	300	152	8,5	380	202	1;
10	4,2	0,10	20	10,2	0,80	40	16,3	1,75	70	35,5	4,00	125	61	5,00	200	92	14,00	180,00		4,80	300	152	10	380	212	18
10	4,2	0,50	20	10,2	0,90	40	16,3	2,00	70	35,5	4,00	125	61	5,00	200	102	8,00	180,00		6,00	300	152	12	400	202	1
10	4,2	0,60	20	10,2	1,00	40	18,3	2,00	70	40,5	4,00	125	61	6,00	200	102	10,00	200,00		5,00	300	152	13	400	202	1:
10	5,2	0,25	20	10,2	1,10	40	20,4	1,50	70	40,5	4,00	125	61	6,00	200	102	12,00	200,00		6,00	300	152	14	400	202	14
10	5,2	0,40	22,5	11,2	0,60	40	20,4	2,00	70	40,5	5,00	125	64	3,50	200	102	14,00	200,00		8,50	300	152	14,5	400	202	1
10	5,2	0,50	22,5	11,2	0,80	40	20,4	2,25	70	40,5	5,00	125	64	5,00	200	112	12,00	200,00		13,00	300	152	15	400	202	1
12	4,2	0,40	23	8,2	0,70	40	20,4	2,50	71	36	2,00	125	64	5,00	200	112	14,00	200,00		5,50	300	152	15,5	400	202	20
12	4,2	0,50	23	8,2	0,80	45	22,4	1,25	71	36	2,50	125	64	6,00	200	112	16,00	200,00		8,30	300	152	16,1	400	202	21
12	4,2	0,60	23	8,2	0,90	45	22,4	1,75	71	36	4,00	125	64	6,00	225	112	6,50	200,00		300,00	300	152	16,5	400	202	22
12	5,2	0,50	23	10,2	0,90	45	22,4	2,50	71	36	4,00	125	71	6,00	225	112	8,00		102,00	11,00	300	152	17	400	202	3
12	5,2	0,60	23	10,2	1,00	48	16,3	1,50	80	30,5	2,50	125	71	6,00	225	112	12,00	200,00		6,00	300	152	18	440	212	18
12	6,2	0,50	23	12,2	1,00	50	18,4	1,25	80	31	3,00	140	72	3,80	225	112	16,00		112,00	15,00	300	152	18,5	440	252	2
12	6,2	0,60	25	12,2	0,70	50	18,4	1,50	80	31	4,00	140	72	5,00	250	102	10,00	225,00		9,00	300	152	19,5	450	202	25
12,5	6,2	0,35	25	12,2	0,90	50	18,4	2,00	80	31	4,00	140	72	5,00	250	102		225,00		10,00	300	152	20	450	252	2
2,5	6,2	0,50	28	10,2	0,80	50	18,4	2,50	80	35,5	4,00	150	61	5,00	250	127	7,00		112,00		300	152	20,5	450	252	2
12,5	6,2	0,70	28	10,2	1,00	50	18,4	3,00	80	35,5	4,00	150	61	5,00	250	127	8,00		127,00	7,50	182	12	600	470	237	3
14	7,2	0,35	28	12,2	1,00	50	20,4	2,00	80	36	3,00	150	61	6,00	250	127	10,00		127,00	9,00	320	172	8,1	480	252	20
14	7,2	0,50	28	14,2	0,80	50	20,4	2,50	80	41	2,25	150	61	6,00	250	127	12,00	250,00		9,20	320	172	9	480	252	20
14	7,2	0,60	28	14,2	1,00	50	22,4	2,00	80	41	3,00	150	71	6,00	250	127	14,00		127,00	10,50	320	172	13	500	202	3
15	5,2	0,40	31,5	16,3	0,80	50	22,4	2,50	80	41	4,00	150	71	6,00	250	127	16,00		127,00	11,00	320	172	15	500	242	3
15	5,2	0,50	34	12,3	1,00	50	25,4	1,25	80	41	4,00	160	82	4,30	70,00	35,50	4,00		127,00	13,00	340	172	9,2	500	252	1
15	5,2	0,60	35,5	18,3	0,90	50	25,4	1,50	80	41	5,00	160,00	82,00	4,30	70,00	40,50	4,00		127,00	13,50	340	172	9,5	600	282	2
15	5,2	0,70	40	20,4	1,00	50	25,4	2,00	80	41	5,00	160	82	6,00	70	40,5	5,00		127,00	14,50	340	172	10,5	282	24	
15	6,2	0,50	22,5	11,2	1,25	50	25,4	2,25	90	46	2,50	160,00		10,00	71,00	36,00	4,00		127,00	15,00	340	172	11			
15 15	6,2	0,60	23	12,2	1,25	50	25,4	2,50	90	46	3,50	180	92	4,80	80,00	31,00	4,00		127,00	16,80	340	172	11,5			
15	6,2	0,70	23	12,2	1,50	50	25,4	3,00	90	46	500	180	92	6,00	80,00	35,50	4,00	250,00		17,50	340	172	12,5			
15	8,2 8,2	0,70	25	12,2	1,50	56	28,5	1,50	90	46	5,00	180	92	6,00	80,00	41,00	4,00	250,00		18,50	340	172	13,5			
16		0,80 0,40	28	10,2	1,25	56	28,5	2,00	100	41	4,00	180	92	6,00	80,00	41,00	5,00	270	127	10,65	340	172	13,7			
16	8,2 8.2	0,40	28 28	10,2 12.2	1,50	56	28,5	2,50	100	41	4,00	200	102	5,50	90,00	46,00	5,00	270	142	22	340	172	14,2			
16	8,2	0,00	28	12,2	1,25 1.50	56 60	28,5 20,5	3,00 2,00	100	41	5,00 5,00	200	102 51	5,50	100,00		4,00	280	127 127	12	340	172	14,6			
18	6,2	0,70	28	14.2	1,25									7,00	100,00	41,00	5,00	280		19	340	172	15,3			
18	6,2	0,40	28	14,2	1,50	60	20,5	2,50	100	51	2,70	125	61	8,00	100,00		4,00	280	142	12	340	172	15,8			
						60	20,5	3,00	100	51	3,50	125	64	7,00	100,00	51,00	5,00	280	142	15	340	172	16,2			
18	6,2	0,60	31,5	16,3 16.3	1,25 1.50	60	25,5 25.5	2,50	100	51 51	4,00	125	64	8,00	100,00	51,00	6,00	280	142 142	16,6	340	172	17			
18			31,5					3,00	100		4,00	125	71	8,00	112,00		4,00	280		17,45	340	172	17,3			
18	6,2	0,80	31,5	16,3	1,75	60	30,5	2,50	100	51	5,00	125	71		112,00		6,00	280	142	18	340	172	18			
18 18	8,2	0,70	31,5	16,3	2,00	60	30,5	2,75	100	51	5,00	140	72	8,00	125,00		4,00	280	142	18,9	340	172	20			
18	8,2	0,80	34	12,3	1,25	60	30,5	3,00	100	51	6,00	150	61	7,00	125,00	51,00	5,00	280	142	20,3	340	172	22			
18	8,2 9,2	1,00 0.45	34	12,3 14.3	1,50 1,25	60	30,5	3,50	100	51 57	6,00	150	71	8,00	125,00	51,00	6,00	280	142	22	360	182	15,5			
		0.40	.54	14.5	1.20	63	31	1,80	112	3/	3,00	150	81	8.00	125,00	61.00	5,00	280	152	12,8	360	182	20			

Groupe 1

Groupe 2 rondelles ressorts avec surface d'appui et épaisseur réduite

Groupe 3
De:
diamètre extérieur
Di :
diamètre intériour

diamètre intérieur t :

épaisseur matière

Rondelles ressorts norme usine Mubea

Maurin Fixation

Prestation de contrôle des produits de fixation

Accompagnement pour la sécurisation de vos produits de fixation

MAURIN FIXATION dispose d'un laboratoire de contrôle au sein duquel des contrôles de conformité et d'expertises sont effectués.

Nous réalisons des essais tels que :

- Traction: charge à rupture, charge d'épreuve, allongement (machine de traction 700 KN).

- Essai de serrage, coefficient de frottement, autofreinage (banc couple/tension).

- Mesure de dureté, métallographie (machine de dureté Vickers).

- Mesure d'épaisseur de revêtement (fluorescence X).

- Mesure de couple (clef dynamométrique).


- **Mesure dimensionnelle** (2D optique, projecteur de profil, PC, micromètre).

- Contrôle par gabarit (bagues et tampons filetés).

Retrouvez la grille tarifaire de nos prestations de contrôle sur

fixation.emile-maurin.fr

MAURIN FIXATION TEL: 33(0)4 72 85 85 85

